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Abstract: Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) are closely associated
with Tau proteins accumulation. In this study, we aimed to implement radiomics analysis to discover
high-order features from pathological biomarker and improve the classification accuracy based on
Tau PET images. Two cross-racial independent cohorts from the ADNI database (121 AD patients,
197 MCI patients and 211 normal control (NC) subjects) and Huashan hospital (44 AD patients, 33
MCI patients and 36 NC subjects) were enrolled. The radiomics features of Tau PET imaging of
AD related brain regions were computed for classification using a support vector machine (SVM)
model. The radiomics model was trained and validated in the ADNI cohort and tested in the
Huashan hospital cohort. The standard uptake value ratio (SUVR) and clinical scores model were
also performed to compared with radiomics analysis. Additionally, we explored the possibility of
using Tau PET radiomics features as a good biomarker to make binary identification of Tau-negative
MCI versus Tau-positive MCI or apolipoprotein E (ApoE) ε4 carrier versus ApoE ε4 non-carrier.
We found that the radiomics model demonstrated best classification performance in differentiating
AD/MCI patients and NC in comparison to SUVR and clinical scores models, with an accuracy of
84.8 ± 4.5%, 73.1 ± 3.6% in the ANDI cohort. Moreover, the radiomics model also demonstrated
greater performance in diagnosing AD than other methods in the Huashan hospital cohort, with an
accuracy of 81.9 ± 6.1%. In addition, the radiomics model also showed the satisfactory classification
performance in the MCI-tau subgroup experiment (72.3 ± 3.5%, 71.9 ± 3.6% and 63.7 ± 5.9%) and
in the MCI-ApoE subgroup experiment (73.5 ± 4.3%, 70.1 ± 3.9% and 62.5 ± 5.4%). In conclusion,
our study showed that based on Tau PET radiomics analysis has the potential to guide and facilitate
clinical diagnosis, further providing evidence for identifying the risk factors in MCI patients.

Keywords: Tau PET; radiomics; Alzheimer’s Disease; Mild Cognitive Impairment

1. Introduction

Alzheimer’s Disease (AD) is a common neurodegenerative disease marked by chronic
primary progressive memory decline and cognitive impairment, which is one of the most
serious diseases threatening the elderly [1]. At present, the early identification and ac-
curate diagnosis for prodromal AD are crucial for clinical decision-making and future
development of treatments. Mild Cognitive Impairment (MCI), as a prodromal stage of
AD, remains the most common underlying AD pathology or mixed pathology [2]. In line
with the latest A-T-N framework, pathologic Tau is closely associated with neurodegen-
eration and necessary for AD-related downstream events [3–5]. Quantifiable tau loads
and its corresponding increase may be a relevant target engagement marker for clinical
disease-modifying interventions in anti-Tau agents.
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Positron emission tomography (PET) offers the opportunity for non-invasively detect-
ing regional distribution of Tau pathology at early stages of neurodegenerative disorders.
First-generation Tau PET ligands have been developed as a highly credible biomarker
of 3R/4R Tau deposits [6]. For instance, 18F-flortaucipir (known as 18F-AV-1451) PET
pattern in AD/MCI specifically targets the clinically affected brain regions (e.g., medial
temporal and lateral temporoparietal regions) and shows a strong regional association with
domain-specific neuropsychological tests [7]. New Tau PET ligands (e.g., 18F-MK-6240,
18F-PI-2620 and 18F-Florzolotau (also known as 18F-APN-1607 and 18F-PM-PBB3) overcome
the off-target binding of the first-generation products and provide fresh insight on the time
course of Tau accumulation related to other biomarkers and clinical manifestation [8,9].
The application of qualitative and quantitative measure of Tau PET imaging, on the other
hand, is in its early stages. The existing PET biomarker and corresponding “defined cutoffs”
may not always reflect the presence or absence of pathology. One Tau-negative study esti-
mate that 27.5% of MCI or dementia due to AD in those >75 years of age might be Tau-PET
negative [10]. At this time, it is unknown how much pathologic Tau can be present in the
brain below the in vivo Tau PET detectable threshold. As the most popular qualitative
and quantitative analysis for PET imaging, visual reading and standard uptake value ratio
(SUVR) may necessitate the sacrifice for complete information in relation to underlying
regional Tau protein deposition. We anticipate that minimal neurofibrillary changes that
are detectable by neuropathology examination can also be identified by Tau PET. Moreover,
some studies have confirmed that brain Tau PET signal changes with age in cognitively
unimpaired individuals and AD patients [11–13]. Tau pathology accumulates early in aging
and relentlessly progresses in the course of AD. These limitations bring challenges to the
clinical utilization of Tau PET imaging.

Radiomics analysis can be applied to explore previously unrecognized signs and
patterns of disease evolution and progression by transforming image data into high-
throughput features that are difficult to detect by the visual system or intensity-based
metrics [14]. Until now, it has been applied to a variety of neuropsychiatric diseases includ-
ing AD/MCI. Previous studies including MRI, 18F- fluoro-2-deoxyglucose (18F-FDG) PET
and Amyloid β-protein (Aβ) PET have shown that radiomics features and classification
models have potential as biomarkers for the diagnosis of AD and MCI [15–18]. These pro-
vide important imaging information for the heterogeneity distribution of microstructure,
metabolism and pathological Aβ in AD or MCI. However, there is no similar research to
deeply explore Tau neuropathological profile. It is also debatable whether radiomics analy-
sis can be employed in Tau-negative PET images. The apolipoprotein E (ApoE) ε4 gene
has been identified as a significant genetic risk factor for AD/MCI [19]. Previous results
found associations between the gene expression and the deposition of Tau for AD [19].
The relationships between Tau PET radiomics features and genetic expression are not well
understood.

Considering the important role of Tau deposits in clinical symptoms and pathological
revelations [20] and the ability of radiomics in high-throughput mining of image features,
we hypothesizes that based on Tau PET radiomics analysis may also be dynamic in the
classification of AD and MCI patients. Furthermore, we anticipate that this method will be
used as neuroimaging biomarkers to differentiate patients with risk factors. Hence, the first
objective of this study is to propose and validate Tau-based radiomics features model for
diagnosing AD/MCI patients by different cohorts (Alzheimer Disease Neuroimaging Initia-
tive (ADNI)-Huashan hospital) and different Tau PET tracers (18F-AV1451-18F-Florzolotau).
Additionally, we explored the possibility of using radiomics features as a good biomarker to
make binary identification of Tau-negative MCI versus Tau-positive MCI or ApoE ε4 carrier
versus ApoE ε4 non-carrier, which is of significant importance, but limited for clinical tests.
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2. Materials and Methods

Figure 1 shows the overall workflow of Tau PET radiomics analysis, namely, (A) col-
lection of images and division of subgroups, (B) image preprocessing, (C) identification
regions of interest (ROIs), (D) feature extraction and selection and (E) SVM classification.
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Figure 1. The main workflow for Tau PET radiomics analysis comprised five sections: subjects,
subgroups, preprocessing, regions of interest and classification. SVM: support vector machine.

2.1. Subjects

All subjects were collected from two different cohorts: ADNI database and Huashan
hospital, Fudan university. (1) For ADNI cohort, 121 AD patients, 197 MCI patients
and 211 normal control (NC) subjects were enrolled from ADNI-1, ADNI-2, ADNI-3
and ANDI GO. Detailed subject inclusion information for ADNI cohort can be found at
http://adni.loni.usc.edu (accessed on 3 May 2022). (2) For Huashan hospital cohort, 44
AD patients, 33 MCI patients and 36 NC subjects were enrolled. AD or MCI patients from
Huashan hospital were clinically evaluated and judged by senior neurologists of cognitive
disorders based on the current diagnostic guidelines [21,22]. NC subjects had no history
for neurologic and psychiatric disorders, and no abnormal neurological examination.

For ADNI and Huashan hospital cohort, age, gender, years of education and Mini-
Mental State Examination (MMSE) score were recorded. Imaging data, including 18F-
flortaucipir (ADNI only) PET, 18F-florzolotau PET (Huashan hospital only) and T1-weighted
structural MRI were collected. Table 1 shows the basic characteristics of all the subjects.

Table 1. Demographic, clinical characteristics for ANDI cohort and Huashan hospital subjects.

Age
(Years)

Sex
(Male/Female)

Education
(Years) MMSE

ANDI cohort
AD (n = 121) 72.1 ± 7.5 * 55/66 * 15.5 ± 2.6 * 24.0 ± 3.3 *

MCI (n = 197) 71.1 ± 7.4 † 108/89 † 16.4 ± 2.5 † 27.9 ± 1.9 †‡

NC (n = 211) 71.2 ± 6.4 79/132 16.7 ± 2.3 29.1 ± 1.2
Huashan hospital

AD (n = 44) 58.2 ± 9.6 17/27 9.8 ± 4.2 * 16.6 ± 6.9 *
MCI (n = 33) 69.4 ± 8.4 †‡ 10/23 10.4 ± 3.2 † 25.6 ± 1.8 †‡

NC (n = 36) 58.5 ± 8.2 18/20 10.1 ± 2.1 27.2 ± 2.5
Data are given as numbers or mean ± standard deviation (SD) values. * p < 0.05 AD vs. NC. † p < 0.05 MCI vs.
NC. ‡ p < 0.05 AD vs. MCI. MMSE: Mini-Mental State Examination.

http://adni.loni.usc.edu
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The ADNI cohort was approved by the institutional review board at each site and all
the participants provided their written consent. The institutional review board of Huashan
Hospital (HIRB) granted ethics approval for Huashan hospital cohort (No. 2018-363).
All patients from Huashan hospital provided written informed consent.

2.2. Radiomics Model

Image Acquisition and preprocessing
Subjects in ADNI and Huashan cohort were scanned by structural T1 MRI and Tau

PET. Detailed information about the ANDI acquisition protocol is described on the website
(http://adni.loni.usc.edu/ accessed on 3 May 2022). Participants from Huashan hospital
underwent a 3.0-T anatomical MRI (Discovery MR750; GE Medical Systems, Milwaukee,
WI, USA) with FOV = 25.6 cm, matrix = 256 × 256 × 152, slice thickness = 1 mm, repetition
time (TR) = 8.2 ms, echo time (TE) = 3.2 ms, flip angle= 12◦. 18F-Florzolotau PET were
acquired on a Siemens mCT Flow PET/CT scanner (Siemens, Erlangen, Germany) in three-
dimensional (3D) mode over a 20 min acquisition time (90–110 min) and reconstructed by
the ordered subset expectation maximization (OSEM) method. The detailed acquisition
protocol for Huanshan hospital has been reported in our previous study [23].

All PET images preprocessing were performed in MATLAB R2018a (MathWorks, Nat-
ick, MA, USA) using the Statistical Parametric Mapping toolbox (version 12; http://www.
fil.ion.ucl.ac.uk/spm/software/spm12/ accessed on 9 May 2022). Frist, PET images were
co-registered with corresponding T1-weighted MRI images. Second, co-registered PET
images were normalized to the Montreal Neurological Institute (MNI) space using the for-
ward the spatial transformation matrix. Third, normalized PET images were subsequently
smoothed with a Gaussian kernel with a full width at half maximum of 8 mm to blur image
edges and improve the signal-to-noise ratio.

Definition of ROIs
For Tau PET, we concentrated on brain areas associated with AD-related Tau protein

deposition, and defined these ROIs to obtain more detailed radiomics features. Namely,
a group comparison using a two-sample t test between AD and NC from ANDI training
datasets (including 85 AD patients and 148 NC subjects) were performed to define the ROIs
with significant differences (FDR corrected, p < 0.01 and cluster size > 500). These ROIs
were mapped to Automated Anatomical Labeling (AAL) for localization by xjView9.6 (http:
//www.alivelearn.net/xjview accessed on 23 May 2022). As MCI remains the most common
underlying AD pathology or mixed pathology, we assume that these ROIs overlap MCI-
related brain areas and can also be used to extract MCI radiomics features. Furthermore,
the AD related regions were considered as ROIs to maintain consistency of radiomics
analysis in subsequent studies.

Radiomics Feature Extraction and Selection
For each subject, radiomics features from each AD related ROIs were computed by

a MATLAB toolkit for radiomics analysis (https://github.com/mvallieres/radiomics/
accessed on 6 June 2022). First, the Lloyd-Max quantization algorithm was applied to
normalize the preprocessed PET images for isotropic resampling. Second, radiomics
features were calculated from quantized PET images. Finally, 3 features from first-order
histogram, 9 features from the Gray-Level Co-occurrence Matrix (GLCM), 13 features
from the Gray-Level Run-Length Matrix (GLRLM), 13 features from the Gray-Level Size
Zone Matrix (GLSZM) and 5 features from the Neighborhood Gray-Tone Difference Matrix
(NGTDM) were extracted. Global features were extracted from the intensity histogram
of the ROIs, whereas GLCM, GLRLM, GLSZM and NGTDM textures are matrix-based
features. The detailed mathematical definition of the radiomics matrices were previously
reported [18].

After feature extraction, two steps were performed for features selection: (1) Correla-
tion analysis was first performed to reduce the dimensionality. If the correlation coefficient
of two feature columns exceeded 0.1, we removed one of them randomly. (2) Second,
a two-sample student’s t test between AD and NC from ANDI training datasets (including

http://adni.loni.usc.edu/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.alivelearn.net/xjview
http://www.alivelearn.net/xjview
https://github.com/mvallieres/radiomics/
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85 AD patients and 148 NC subjects) were used to further select the features with significant
differences (p < 0.005).

Classification
The subjects from ADNI data were randomly assigned to training and validation

datasets at proportions of 0.7 and 0.3, respectively. The SVM was applied to construct the
classification models of the AD-NC and MCI-NC groups based on the selected features with
five-fold cross-validation 100 times in training datasets and the validation dataset was used
to verify the robustness of our radiomics model. Then, the data from Huashan hospital
were used as independent external test sets to validate the reliability and robustness of the
corresponding models. In addition, age and sex had been treated as the covariates for SVM
classification. Receiver operating characteristic (ROC) curves and the corresponding areas
under the curve (AUC) were used to evaluate the diagnostic capabilities of the radiomics
features.

2.3. Comparative Models

To verify the superiority of radiomics model, two comparative models were performed
as the followed: (1) SUVR model: the SUVR value of each ROI was calculated by a reference
region (cerebellum) and used as the input of the classifier. (2) Clinical scores model: MMSE
scores, as the inputs, were construct the clinical prediction model. The SVM with a linear
kernel function was also used as the classifier in the comparative experiment.

2.4. Radiomics Model in MCI Subgroups

To explore the performance of radiomics model on the identification of Tau-negative
MCI vs. Tau-positive MCI or MCI ApoE ε4 carrier vs. ApoE ε4 non-carrier, MCI patients
were further divided into subgroups. (1) For Tau-negative MCI vs. Tau-positive MCI(MCI-
tau (+)/MCI-tau(-)), MCI Tau PET images were visually interpreted by two experienced
neuroimaging specialist who were blinded to clinical information and made positive or
negative decisions based global cortical binding. The final binary decision was based
on the consensus of two independent assessors. (2) For ApoE ε4 carrier vs. ApoE ε4
non-carrier (MCI-ApoE(+)/MCI-ApoE(-)), ApoE gene expression was recorded only in 171
MCI patients from ANDI cohort. The ApoE status was determined by the ApoE ε4 gene
expression or not. Radiomics model was treated with the same method as above.

2.5. Statistical Analysis

Statistical analyses were performed using SPSS software 26.0 (IBM Corporation, Ar-
monk, NY, USA). For categorical and continuous variables, the demographic information
was collected as numbers or means ± SD. The chi-squared tests for categorical variables
(sex) and one-way ANOVA test between AD, MCI and NC groups was performed. Values
were considered significant for p < 0.05.

3. Results
3.1. Demographic and Clinical Characteristics

The demographic and clinical characteristics of the ANDI cohort and Huashan hospital
subjects are presented in Table 1. (1) For the ANDI cohort, there was a significant difference
in age, sex, years of education and MMSE between AD and NC or MCI and NC group
(p < 0.05) and the AD group is different from MCI group in MMSE scores (p < 0.05). There
is no difference in age, sex or years of education between AD and MCI group. (2) For
Huashan hospital cohort, a difference in age, years of education and MMSE between MCI
and NC group (p < 0.05) and a difference in years of education and MMSE between AD and
NC group (p < 0.05) and there was a difference in age and MMSE between AD and MCI
group (p < 0.05). There is no age difference between AD and MCI group. No difference was
found in sex among the AD, MCI and NC group.
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3.2. The Defined ROIs and Selected Features

In final, 60 ROIs based on AAL atlas were obtained from the above method (Table S1).
The result showed that majority of the ROIs were found in the frontal, temporal and
occipital lobe (Figure 2).
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The total amount of features extracted from ROIs was 2580 ((3 + 40) × 60 = 2580).
After the features selection, 31 features mainly from GLSZM and NGTDM were left in the
frontal, temporal and occipital lobe. The details of these features provided in Table S2.

3.3. Tau PET Radiomics Model for the Diagnosis AD/MCI

For the identification of AD from NC, we obtained an accuracy of 84.8 ± 4.5% with
the ADNI validation dataset by radiomics model and an accuracy of 81.9 ± 6.1% with the
Huashan hospital as the independent external test data. The performances of the SUVR and
Clinical scores model were poorer than radiomics model with accuracies of 80.3 ± 1.4% and
70.5 ± 5.2%, respectively, in the ADNI validation dataset and 75.1 ± 3.5% and 66.4 ± 10.2%,
respectively, in the Huashan hospital cohort (Table 2).

Table 2. The classification results for AD vs. NC subjects.

Model Accuracy
(%)

Sensibility
(%)

Specificity
(%)

Radiomics
Validation 84.8 ± 4.5 76.1 ± 5.1 88.7 ± 2.9

Test 81.9 ± 6.1 83.8 ± 4.9 78.6 ± 7.3
SUVR

Validation 80.3 ± 1.4 61.5 ± 3.5 87.0 ± 5.0
Test 75.1 ± 3.5 60.8 ± 7.8 79.1 ± 1.5

Clinical scores
Validation 70.5 ± 5.2 58.2 ± 13.9 79.9 ± 12.0

Test 66.4 ± 10.2 53.3 ± 6.5 70.2 ± 11.7

For the identification of MCI from NC, we obtained an accuracy of 73.1 ± 3.6%
with the ADNI validation dataset. The performances of the SUVR and Clinical scores
model were poorer than radiomics model with accuracies of 70.8 ± 2.7% and 65.1 ± 5.2%,
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respectively, in ADNI validation dataset. The accuracy with the Huashan hospital as the
independent external test data was 63.5 ± 8.7%. The performances of Clinical scores model
(accuracy: 63.1 ± 11.0%) were very similar to radiomics model in the Huashan hospital.
However, the performances of the SUVR model (accuracy: 68.7 ± 5.5%) were not poorer
than radiomics model (Table 3).

Table 3. The classification results for MCI vs. NC subjects.

Model Accuracy
(%)

Sensibility
(%)

Specificity
(%)

Radiomics
Validation 73.1 ± 3.6 71.3 ± 6.1 75.0 ± 5.5

Test 63.5 ± 8.7 65.7 ± 8.8 60.6 ± 5.8
SUVR

Validation 70.8 ± 2.7 58.5 ± 14.8 88.4 ± 9.8
Test 68.7 ± 5.5 53.8 ± 14.4 86.7 ± 8.7

Clinical scores
Validation 65.1 ± 5.2 42.5 ± 13.9 87.5 ± 12.0

Test 63.1 ± 11.0 49.8 ± 9.6 80.5 ± 21.5

Compared to SUVR or Clinical scores model, the median AUC of the radiomics model
reached 0.906/0.850 and achieved the best performance for diagnosis AD/MCI from NC
(Figure 3).
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3.4. Tau PET Radiomics Model for the Diagnosis MCI Subgroups

With the MCI-tau(+) vs. NC classification, we obtained an accuracy of 93.5 ± 2.7%
and 72.3 ± 3.5% for the ADNI training data and validation data, respectively. With the
MCI-tau(-) vs. NC classification, the accuracy in the training data and validation data was
91.7 ± 0.9% and 71.9 ± 3.6%, respectively. The performance of the MCI-tau(+) vs. MCI-
tau(-) classification was also excellent with the accuracies of 83.4 ± 5.2% and 63.7 ± 5.9% in
ADNI training data and validation data, respectively (Table 4.). The AUC for MCI-tau(+)
vs. NC, MCI-tau(-) vs. NC and MCI-tau(+) and MCI-tau(-) were 0.918 (0.829–0.955), 0.820
(0.752–0.907) and 0.711 (0.668–0.805), respectively (Figure 4).

For the identification of MCI-ApoE(+) from NC, we obtained an accuracy of 92.7 ± 1.1%
and 73.5 ± 4.3% with the ADNI training data and validation data, respectively. For the
identification of MCI-ApoE(-) from NC, we obtained an accuracy of 92.5 ± 2.9% and
70.1 ± 3.9% with the ADNI training data and validation data, respectively. In addition,
we obtained an accuracy of 87.1 ± 8.9% and 62.5 ± 5.4% for the classification of MCI-
ApoE(+) vs. MCI-ApoE(-) (Table 5). The AUC for MCI-ApoE(+) vs. NC, MCI-ApoE(-) vs.
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NC and MCI-ApoE(+) and MCI-ApoE(-) were 0.910 (0.861–0.937), 0.826 (0.788–0.853) and
0.701 (0.632–0.747), respectively (Figure 4).

Table 4. The classification results for MCI-tau subgroups.

Accuracy
(%)

Sensibility
(%)

Specificity
(%)

MCI-tau(+) vs. NC
Train 93.5 ± 2.7 92.0 ± 2.2 94.1 ± 3.6

Validation 72.3 ± 3.5 70.4 ± 5.9 74.0 ± 5.8
MCI-tau(-) vs. NC

Train 91.7 ± 0.9 91.0 ± 1.2 92.0 ± 3.4
Validation 71.9 ± 3.6 70.1 ± 6.0 73.5 ± 5.1

MCI-tau(+) vs. MCI-tau(+)
Train 83.4 ± 5.2 88.5 ± 7.3 80.1 ± 4.5

Validation 63.7 ± 5.9 69.4 ± 6.6 53.2 ± 8.0

Table 5. The classification results for MCI-ApoE subgroups.

Accuracy
(%)

Sensibility
(%)

Specificity
(%)

MCI-ApoE(+) vs. NC
Train 92.7 ± 1.1 92.7 ± 2.1 93.8 ± 1.8

Validation 73.5 ± 4.3 68.0 ± 3.8 76.6 ± 4.6
MCI-ApoE(-) vs. NC

Train 92.5 ± 2.9 91.0 ± 3.3 92.9 ± 2.0
Validation 70.1 ± 3.9 68.0 ± 3.0 72.8 ± 5.1

MCI-ApoE(+) vs. MCI-ApoE(-)
Train 87.1 ± 8.9 90.3 ± 10.5 83.6 ± 5.7

Validation 62.5 ± 5.4 71.6 ± 7.2 51.6 ± 11.0
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Figure 4. Receiver operating characteristic (ROC) curves in classification of MCI-tau subgroups
and MCI-ApoE subgroups. [MCI-tau(+)-MCI-tau(-) AUC: 0.711 (0.668–0.805), MCI-tau(-)-NC AUC:
0.820 (0.752–0.907), MCI-tau(+)-NC AUC: 0.918 (0.829–0.955)]; [MCI-ApoE(+)-MCI-ApoE(-) AUC:
0.701 (0.632–0.747), MCI-ApoE(-)-NC AUC: 0.826 (0.788–0.853) and MCI-ApoE(+)-NC AUC: 0.910
(0.861–0.937)]. Data are given as median (interquartile range). TPR: True Positive Rate; FPR: False
Positive Rate; AUC: Areas under the curve.

4. Discussion

So far, few studies had investigated the use of artificial intelligence on Tau PET images
for the assessment of neurodegenerative diseases. In this paper, we proposed Tau PET-based
radiomics analysis as a novel biomarker to apply to AD/MCI. Meanwhile, we selected
two cross-racial independent cohorts with different PET scanners, two imaging tracers,
to prove the stability and generalization of the method. We find that this radiomics model
has the potential of improving the diagnostic accuracy for AD/MCI, even contributing to
the identification of MCI with negative or positive Tau PET. Moreover, we evaluated this
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model could predict the ApoE4 carrier results of MCI patients, which is an important risk
factor predicting progression to dementia.

Radiomics seeks to extract high-throughput quantitative information from medical
images, especially those that are difficult for the human eyes to recognize or quantify [14].
Prior studies offered solid evidence that AD/MCI patients had Tau deposition in the
frontal, temporal, parietal and occipital lobes [24,25]. In our study, AD-related ROIs were
characterized by SPM analysis in frontal, temporal and occipital lobe, which is consistent
with those reported in the above literature. Eventually, 31 radiomics features, mainly
from GLSZM and NGTDM, in the temporal, parietal, occipital lobes and cingulate gyrus
were left. The GLSZM-derived features assess the variability of gray-level intensity values
and the distribution of large area size zones in the image [26]. The NGTDM-derived
features mainly reflect the difference between a gray value and the average gray value
of its neighbors [26]. These radiomics features were usually difficult to detect by manual
inspection, but computer-aided technology scan effectively identified them. Significant
differences on the above features showed the highest inter-patient variability within the
distributions of voxel values. Additionally, it provided multidimensional evidence that Tau
deposit occurred in specific brain regions.

Currently, more evidence highlighted the possibility that radiomics can be employed
as imaging biomarkers for AD and MCI [27,28]. T1-weighted Magnetic Resonance Imaging
(MRI) radiomics methods were first used to distinguish AD/MCI from NC. Other MRI
sequences, including Voxel-Based Morphometry (VBM), Susceptibility-Weighted Imaging
(SWI) and Diffusion Tensor Imaging (DTI), were used in detecting the brain structural and
functional changes of AD and MCI [27]. For example, Feng et al., performed the logistic
analysis with a classification accuracy of 0.9 for AD vs. NC, an accuracy of 0.81 for AD vs.
MCI and an accuracy of 0.75 for MCI vs. NC [29]. For FDG PET, radiomics features pro-
vided the best performance with classification accuracy of 0.77 vary to 0.94on MCI/NC and
AD/NC [18,30]. As the common Aβ neurobiological biomarkers, the high-order features of
Aβ PET also achieved an accuracy of 0.87 for AD vs. NC classification [31]. Compared with
above studies, our Tau PET radiomics model achieved similar to classification accuracy.
Additionally, the classification accuracy remained slightly lower in independent external
test dataset from the Huashan hospital cohort. Notably, the Tau PET tracer in Huashan
hospital cohort is different from ANDI cohort. Thus, we can conclude that the high accu-
racy achieved was a consequence of the robustness of the radiomics classification model.
According to our results of the comparative experiment, the performance of this model
outperformed SUVR or Clinical scores model. For Tau PET, SUVR typically defined as the
ratio of average activity in brain ROI relative to reference (usually in cerebellum). However,
the reference in cerebellum has some disadvantages including small size, low signal detec-
tion sensitivity and the partial volume effect (PVE) [32]. For MMSE scores, it has shown
not to be adequate in detecting MCI and clinical signs of dementia due to the ceiling or the
floor effect and higher subjectivity [33]. Hence, the incomplete characteristics of the SUVR,
limitation of the neuropsychological scales may lead to the comparative results [34].

Variations in the types, amounts and distribution of concomitant AD or non-AD
pathologies may account for the Tau ‘positivity’ or ‘negativity’ of MCI [35]. Previous
studies showed that these Tau negativity individuals were less likely to have AD-related
clinical features and that the majority did not develop dementia over at least 5 years of
follow-up [36]. Early in vivo diagnosis of MCI with Tau positivity, which may evolve
into AD, is critical for accurate patient management. In our study, the radiomics models
exhibited satisfactory performance in automated detection of MCI with Tau-negative or
Tau-positive cases with mean accuracy of 72.3% or 71.9% from NC. This method could be
helpful to identify and eventually treat patients as early as possible in the disease process.
It also could be applied to overcome obvious shortcomings of traditional assessment, such
as manual operations of image intensity and inter-reader variability of visual interpretation.

The APOE ε4 genotype expression is related to higher risk of AD/MCI [37]. The associ-
ations between the genetic phenotypes and AD-associated Tau deposition had been proven
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and light the genetic basis for Tau deposition [38]. Considering the toxicity, identification
of APOE ε4 carriers and blocking its action may delay or stop the development of AD [39].
As expected, our study showed that radiomics features was also affected by the ApoE ε4
genotype. This radiomics model showed the high accuracy for the identification of APOE
ε4 carrier or non-carrier from NC. It is meaningful that Tau radiomics features had been
confirmed to have genetic significance and were helpful for identifying MCI with risk
genetic factor.

For this study, we draw attention to some limitations. First, the diagnosis of AD/MCI
was not confirmed by the autopsy. AD is a significant heterogeneous disease with various
forms clinical presentation, which is now referred to as the Alzheimer spectrum [40].
We strictly adopted the standardized clinical diagnostic criteria to classify patients into
AD and MCI. Second, we divided MCI subjects into MCI-tau(+) and MCI-tau(-) group by
visual interpretation. Considering subjectivity of the naked eye, a reliable strategy for tau
PET analysis is desired to be developed in the future. Third, we did not use the scale for
related exclusion study. Whether the bias of the scale has an impact on the results needs
further discussion. Fourth, we only employed single independent external cohorts with
relatively small the number of subjects. A larger cohort and a multicenter study is required
for stronger verification in future research. Finally, the study is its retrospective nature.
Ongoing longitudinal observational studies in the model will be explored to validate these
results.

5. Conclusions

In conclusion, we explored radiomics model for the classification of AD/MCI based on
Tau deposition. Our results demonstrated that this model could acquire high-level evidence
for clinical practice and accurately and stably identify AD/MCI from NC. In addition,
we also find that these radiomics features can identify the risk factors in MCI patients,
i.e., deposition of Tau and APOE ε4 gene expression. These findings show that Tau PET
radionics can serve as new neuroimaging biomarker for clinical aided classification, further
providing evidence that advanced machine learning methods may contribute to clarify the
neuropathological mechanism for AD from a new perspective.
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AD Alzheimer’s Disease
MCI Mild Cognitive Impairment
NC Normal control
SVM Support vector machine
SUVR Standard uptake value ratio
PET Positron emission tomography
18F-FDG 18F- fluoro-2-deoxyglucose
ApoE apolipoprotein E
Aβ Amyloid β-protein
ROIs Regions of interest
ADNI Alzheimer Disease Neuroimaging Initiative
MMSE Mini-Mental State Examination
GLCM Gray-Level Co-occurrence Matrix
GLRLM Gray-Level Run-Length Matrix
GLSZM Gray-Level Size Zone Matrix
NGTDM Neighborhood Gray-Tone Difference Matrix
ROC Receiver operating characteristic
AUC Areas under the curve
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